首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5177篇
  免费   81篇
  国内免费   48篇
电工技术   11篇
综合类   217篇
化学工业   2331篇
金属工艺   73篇
机械仪表   46篇
建筑科学   85篇
矿业工程   61篇
能源动力   1470篇
轻工业   41篇
水利工程   14篇
石油天然气   288篇
武器工业   6篇
无线电   30篇
一般工业技术   428篇
冶金工业   114篇
原子能技术   21篇
自动化技术   70篇
  2024年   4篇
  2023年   92篇
  2022年   142篇
  2021年   157篇
  2020年   199篇
  2019年   177篇
  2018年   167篇
  2017年   133篇
  2016年   85篇
  2015年   76篇
  2014年   235篇
  2013年   233篇
  2012年   186篇
  2011年   373篇
  2010年   286篇
  2009年   370篇
  2008年   343篇
  2007年   265篇
  2006年   211篇
  2005年   213篇
  2004年   160篇
  2003年   225篇
  2002年   144篇
  2001年   117篇
  2000年   122篇
  1999年   128篇
  1998年   91篇
  1997年   57篇
  1996年   61篇
  1995年   45篇
  1994年   44篇
  1993年   44篇
  1992年   46篇
  1991年   23篇
  1990年   15篇
  1989年   11篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有5306条查询结果,搜索用时 15 毫秒
41.
Anaerobic digestion is a multi-step biotechnological process, in which H2 is not detected as it is consumed immediately e.g. by hydrogenotrophic methanogens to produce CH4 and CO2. Recently a two-stage AD concept consisting of hydrogenic process followed by methanogenic process was suggested. However, only few models of this process are known. In this study a mathematical model of a continuous process of AD with production of hydrogen and methane in a cascade of two bioreactors, including some intermediate products in the first bioreactor was developed and investigated.  相似文献   
42.
In the recent past, society has become increasingly aware of the environmental impact of political and corporate action. Hence, several industrial sectors are currently undergoing a transition to more sustainable products and processes. Sustainable production processes for C2-C4 alcohols can help to decrease the environmental impacts of large downstream markets such as fuels and polymers. However, a reliable and consistent framework is needed for companies to further develop and commercialize these processes. Furthermore, standardized procedures for determining the sustainability of a process are essential in evaluating the environmental benefits.  相似文献   
43.
This paper was intended to delineate numerical research for hydrogen catalytic combustion over a circular cylinder. The wire/rod-type catalytic reactor is a simple geometry reactor with an economical design with less pressure loss. For the single rod in the reaction channel, the flow characteristic and the difference of conversion efficiency between non-gas-phase reaction and gas-phase reaction have been delineated in the present study. The flow field and the chemical reactions were numerically modeled using 2D Large Eddy Simulation combined with the gas-phase and surface reaction mechanisms. The results show that the current numerical simulation has been validated to precisely predict the vortex shedding and its frequency in the cold flows. Despite the variation trends being dominated by the upstream flow, the vortex shedding phenomena were affected by the flue gas generated from the rod surface. It can be seen from the linear relationship between the vortex shedding frequency of reacting flow and Reynolds Number. It is noted that the vortex shedding vanished if the gas-phase reaction was ignited in the reaction channel. In addition, the geometric modified conversion efficiency was proposed to delineate an indicator that could be potential for the optimization of rod-type catalytic reactor. In summary, the fundamental study of a rod in a 2D flow channel can provide information for optimizing the catalytic design or the rod array arrangement in the reactor. Moreover, the rod can also be a partial catalytic flame holder to ignite and stabilize the gas-phase reaction. The obtained results could be the potential for practical applications of rod-type catalytic combustion, catalytic gas turbine, hydrogen generation, partially catalytic reaction flame holder, and other catalytic reactions that can be appreciated.  相似文献   
44.
Electricity and water from renewable hydropower plant are used as input for electrolysis unit to generate hydrogen, while CO2 is captured from 600 MW supercritical coal power plant using post-combustion chemical solvent based technology. The captured CO2 and H2 generated through electrolysis are used to synthesize methanol through catalytic thermo-chemical reaction. The methanol synthesis plant is designed, modeled and simulated using commercial software Aspen Plus®. The reactor is analyzed for two widely adopted kinetic models known as Graaf model and Vanden-Bossche (VB) model to predict the methanol yield and CO2 conversion. The results show that the methanol reactor based on Graaf kinetic model produced 0.66 tonne of methanol per tonne of CO2 utilized which is higher than that of the VB kinetic model where 0.6 tonne of methanol is produced per tonne of CO2 utilized. The economic analysis reveals that 1.2 billion USD annually is required at the present cost of both H2 production and CO2 abatement to utilize continuous emission of 3.2 million tonne of CO2 annually from 600 MW supercritical coal power unit to synthesize methanol. However, sensitivity analysis indicates that methanol production becomes feasible by adopting anyone of the route such as by increasing methanol production rate, by reducing levelised cost of hydrogen production, by reducing CO2 mitigation cost or by increasing the current market selling price of methanol and oxygen.  相似文献   
45.
The silica- and alumina-supported Co–Zn catalysts were synthesized by thermal decomposition of new inorganic precursors [Co4.32Zn1.68(HCO2)18(C2H8N)6]/SiO2 or Al2O3. A novel coordination polymer formulated as [Co4.32Zn1.68(HCO2)18(C2H8N)6] (1) was prepared using the solvothermal technique and characterized by elemental analysis, FT-infrared spectroscopy. Thermal stability of the complex 1 was investigated by thermogravimetric analysis and differential scanning calorimetry, and its structure was determined by single-crystal X-ray diffraction. Characterization of catalysts was carried out using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET specific surface area. The catalysts were evaluated for Fischer–Tropsch synthesis (FTS) in the temperature range 200–300 °C. The results revealed that the synthesized catalysts have higher selectivity to the desired products at 260 °C. The performance of the catalysts was compared to those of catalysts constructed via impregnation method and the fabricated catalysts show higher activity and selectivity than the reference catalysts.  相似文献   
46.
The biorefinery has been recognized as a new industry to produce both energy and chemical materials such as olefins and BTX from renewable resources. In this context the conversion of butyric acid over zeolites was investigated for establishing a new production route of propylene. Propylene was mainly generated by decarbonylation and dehydration of butyric acid. Our study proved that H-ZSM-5 (750) and silicalite were the best industrial catalyst among the tested ones. For H-ZSM-5 (750), the selectivity of propylene reached 64.2 C% and the ratio of the yield for propylene to theoretical yield (75 C%) became 85.6%.  相似文献   
47.
Nanoceria was synthesized by treating cerium carbonate hydrate in a molten KOH-NaOH mixture at 200 °C. The nanoceria thus synthesized under a hydrogen atmosphere had a crystal size of 21.6 nm measured by XRD, consistent with the particle size of 23 nm measured by TEM. Raman spectra results indicated that the nanoceria produced under hydrogen had a downshift of 0.9 cm?1 from the sample synthesized in air. XPS spectra showed that the Ce3+ fraction of the nanoceria synthesized in hydrogen was greater than that produced in air. The oxygen vacancies were formed by partial oxidization of the precursor in molten KOH-NaOH mixture. The UV–visible absorption properties of ceria synthesized under hydrogen showed a 34 nm red-shift compared with that synthesized in air. The nanoceria prepared in this work had a better catalytic property for CO oxidization than the commercial nanoceria. Results indicated that the increased Ce3+ fraction or oxygen vacancies formed by this partial oxidization process extended the absorption edge of ceria resulting in a narrower band gap, and enhanced the catalytic activity of nanoceria. This method has proven to provide a simple and scalable method for the synthesis of high quality nanoceria.  相似文献   
48.
49.
Abstract

A series of Cu-K/Al2O3 catalysts were synthesized by wet impregnation technique. The reduced catalysts were further used for conversion of carbon dioxide to methane and carbon monoxide. Moreover, the fresh and used catalysts were characterized to investigate the changes in the surface morphology, metal dispersion, surface area, crystalline phases, and functional groups of studied catalysts. The SEM analysis of fresh and spent catalysts showed no remarkable difference in surface morphology with irregular shaped agglomerated particles. Furthermore, TEM micrographs presented the well distribution of metal catalyst over alumina support. The decrease in surface area from 115 to 77?m2/g for Cu1.62-K0.5/Al2O3 after reaction was related to sintering and oxidation of catalyst during reaction. XRD revealed the disappearance of some minor peaks which can be associated with the sintering of spent catalyst. FTIR also presented some new peak for spent catalyst which can be linked with metal oxides. Moreover, various reaction conditions of temperature (230, 400, and 600?°C), pressure (1 and 7?bar), and feed molar ratio of H2/CO2 (2:1 and 4:1) were investigated using different Cu loading (0, 1, 1.25, 1.62, and 4 weight percent). A maximum CO2 conversion of 63% with 39% CH4 selectivity was achieved by using Cu1.62-K0.5/Al2O3 at 600?°C, molar ratio of H2/CO2 4 under 7?bar. The presence of K on the surface of synthesized catalyst increased the CO2 conversion from 48% (Cu1/Al2O3) to 55% (Cu1-K0.5/Al2O3) at above mentioned reaction conditions which suggested the promoter effect of K during conversion of carbon dioxide.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号